These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protective effect of ginsenoside Rb1 on integrity of blood-brain barrier following cerebral ischemia. Author: Chen W, Guo Y, Yang W, Zheng P, Zeng J, Tong W. Journal: Exp Brain Res; 2015 Oct; 233(10):2823-31. PubMed ID: 26070903. Abstract: Ginsenosides, the major bioactive compounds in ginseng root, have been found to have antioxidant, immunomodulatory, and anti-inflammatory activities. In the present study, we sought to investigate whether and how ginsenoside Rb1 (GS-Rb1), the most abundant ginsenoside, can protect blood-brain barrier (BBB) integrity following cerebral ischemia in middle cerebral artery occlusion (MCAO) animal model. ICR mice underwent MCAO and received GS-Rb1 by intraperitoneal injection at 3 h after reperfusion. We evaluated infarction, neurological scores, brain edema, Evans blue (EB) extravasation, and tight junction protein expression at 48 h after MCAO. We further examined whether GS-Rb1 protected BBB integrity by suppressing post-ischemic inflammation-induced activity of matrix metalloproteinase-9 (MMP-9) and nicotinamide adenine dinucleotide phosphate oxidase (NOX). First, GS-Rb1 decreased infarction and improved neurological deficits in MCAO animals. In addition, GS-Rb1 reduced EB extravasation and brain edema and preserved expression of tight junction proteins in the ischemic brain. Moreover, GS-Rb1 inhibited expression of pro-inflammatory factors including nitric oxide synthase and IL-1β, but increased expression of anti-inflammatory markers arginase 1 and IL-10 in the ischemic brain. Consistently, GS-Rb1 attenuated ischemia-induced expression and activity of MMP9. Finally, GS-Rb1 reduced NOX-4 mRNA expression and NOX activity in ischemic brain. These results suggest that GS-Rb1 protects loss of BBB integrity in ischemic stroke by suppressing neuroinflammation induction of MMP-9 and NOX4-derived free radicals, and indicate its potential for treating brain injuries, such as ischemia and stroke.[Abstract] [Full Text] [Related] [New Search]