These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ouabain Attenuates Cardiac Hypertrophy of Male Rat Offspring Exposed to Intrauterine Growth Restriction Following High-Salt Diet Challenge.
    Author: Chen L, Yue J, Wu H, Yang J, Han X, Li J, Hu Y.
    Journal: Reprod Sci; 2015 Dec; 22(12):1587-96. PubMed ID: 26071389.
    Abstract:
    Ouabain can normalize the blood pressure of the adult intrauterine growth restriction (IUGR) offspring through retaining the number of glomeruli of the IUGR newborn. However, the melioration of hemodynamic features coinciding with the improvement in cardiac structure and function is poorly understood. Intrauterine growth restriction was induced in pregnant rats with protein intake restriction, and ouabain was administrated using osmotic mini pumps from the second gestational day. The male offspring of the mothers with normal diet, low-protein diet, and low-protein diet added with ouabain treatment were randomly divided into 2 groups, one of which received normal diet and the other was treated with isocaloric 8% high-salt diet. We found that maternal malnutrition caused fetal growth retardation. At the end of a 40-week research, the offspring of the IUGR group presented high blood pressure and deteriorative cardiac performance and even worse in the offspring fed with 8% high-salt diet. Ouabain can normalize the blood pressure and improve the cardiac performance, even if following 8% high-salt diet challenge. Pathological and molecular analyses showed IUGR following 8% high-salt diet significantly increased the cardiac hypertrophy, whereas the unfavorable effects were ameliorated in the offspring treated with ouabain. Results suggest that the effects of ouabain on restoration of glomerular number in newborn and normalization of blood pressure during adulthood in IUGR male offspring can benefit the cardiac structure and function, especially under high-salt diet challenge.
    [Abstract] [Full Text] [Related] [New Search]