These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 68Ga- and 177Lu-Labeled PSMA I&T: Optimization of a PSMA-Targeted Theranostic Concept and First Proof-of-Concept Human Studies. Author: Weineisen M, Schottelius M, Simecek J, Baum RP, Yildiz A, Beykan S, Kulkarni HR, Lassmann M, Klette I, Eiber M, Schwaiger M, Wester HJ. Journal: J Nucl Med; 2015 Aug; 56(8):1169-76. PubMed ID: 26089548. Abstract: UNLABELLED: On the basis of the high and consistent expression of prostate-specific membrane antigen (PSMA) in metastatic prostate cancer (PC), the goal of this study was the development, preclinical evaluation, and first proof-of-concept investigation of a PSMA inhibitor for imaging and therapy (PSMA I&T) for (68)Ga-based PET and (177)Lu-based endoradiotherapeutic treatment in patients with metastatic and castration-resistant disease. METHODS: PSMA I&T was synthesized in a combined solid phase and solution chemistry strategy. The PSMA affinity of (nat)Ga-/(nat)Lu-PSMA I&T was determined in a competitive binding assay using LNCaP cells. Internalization kinetics of (68)Ga- and (177)Lu-PSMA I&T were investigated using the same cell line, and biodistribution studies were performed in LNCaP tumor-bearing CD-1 nu/nu mice. Initial human PET imaging studies using (68)Ga-PSMA I&T, as well as endoradiotherapeutic treatment of 2 patients with metastatic PC using (177)Lu-PSMA I&T, were performed. RESULTS: PSMA I&T and its cold gallium and lutetium analog revealed nanomolar affinity toward PSMA. The DOTAGA (1,4,7,10-tetraazacyclododecane-1-(glutamic acid)-4,7,10-triacetic acid) conjugate PSMA I&T allowed fast and high-yield labeling with (68)Ga(III) and (177)Lu(III). Uptake of (68)Ga-/(177)Lu-PSMA I&T in LNCaP tumor cells is highly efficient and PSMA-specific, as demonstrated by competition studies both in vitro and in vivo. Tumor targeting and tracer kinetics in vivo were fast, with the highest uptake in tumor xenografts and kidneys (both PSMA-specific). First-in-human (68)Ga-PSMA I&T PET imaging allowed high-contrast detection of bone lesions, lymph node, and liver metastases. Endoradiotherapy with (177)Lu-PSMA I&T in 2 patients was found to be effective and safe with no detectable side effects. CONCLUSION: (68)Ga-PSMA I&T shows potential for high-contrast PET imaging of metastatic PC, whereas its (177)Lu-labeled counterpart exhibits suitable targeting and retention characteristics for successful endoradiotherapeutic treatment. Prospective studies on larger cohorts of patients are warranted and planned.[Abstract] [Full Text] [Related] [New Search]