These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ion specificity of macromolecules in crowded environments.
    Author: Song W, Liu L, Liu G.
    Journal: Soft Matter; 2015 Aug 07; 11(29):5940-6. PubMed ID: 26119620.
    Abstract:
    Macromolecular crowding plays a significant role in the solubility and stability of biomacromolecules. In this work, the thermo-sensitive poly(N-isopropylacrylamide) (PNIPAM) has been employed as a model system to study the specific ion effects on the solubility of macromolecules in crowded environments of dextran and polyethylene glycol (PEG). Our study demonstrates that crowding agents can interact with either anions or PNIPAM chains. The chaotropic anion SCN(-) interacts with dextran but does not interact with PEG. Both Cl(-) and CH3COO(-) do not interact with dextran and PEG. On the other hand, dextran can interact with PNIPAM as a hydrogen-bond donor, whereas PEG interacts with PNIPAM as a hydrogen-bond acceptor. The salting-in effect exerted by SCN(-) on PNIPAM is weakened in the crowded environment of dextran but is strengthened in the crowded environment of PEG due to the distinct anion-crowder interactions. In parallel, the salting-out effect generated by Cl(-) and CH3COO(-) on PNIPAM is weakened by the crowding of dextran but is strengthened by the crowding of PEG because of the different macromolecule-crowder interactions. Our study reveals that the ion specificity of macromolecules is altered significantly changing from dilute solutions to crowded environments.
    [Abstract] [Full Text] [Related] [New Search]