These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: G-quadruplex DNAzyme-based electrochemiluminescence biosensing strategy for VEGF165 detection: Combination of aptamer-target recognition and T7 exonuclease-assisted cycling signal amplification.
    Author: Zhang H, Li M, Li C, Guo Z, Dong H, Wu P, Cai C.
    Journal: Biosens Bioelectron; 2015 Dec 15; 74():98-103. PubMed ID: 26120816.
    Abstract:
    The expression profile of vascular endothelial growth factor (VEGF) is highly correlated with the occurrence and development of cancer. This work reports an electrochemiluminescence (ECL) approach for highly sensitive detection of VEGF165. This approach comprises aptamer-target recognition, T7 exonuclease (T7 Exo)-assisted cycling signal amplification and efficient quenching of ECL of CdS:Eu nanocrystals (NCs) by using DNAzyme. In this assay, CdS:Eu NCs were used as the ECL substrate, A guanine (G)-rich single-stranded DNA (ssDNA) sequence and VEGF165 aptamer were co-immobilized on the surface of the CdS:Eu NCs modified glassy carbon electrode. After recognition and binding to VEGF165, the aptamer moved away from the electrode surface and induced the proposed cyclic cleavage of the target DNA with T7 Exo. A large amount of G-rich ssDNA was released on the CdS:Eu film and folded into G-quadruplex/hemin DNAzyme in the presence of hemin and K(+), consequently decreasing the ECL intensity of CdS:Eu. A good linearity was obtained for VEGF165 detection within the range of 1 pM to 20 nM with a detection limit of 0.2 pM. This assay could be a universal and promising protocol for detection of various biomarkers for early clinical diagnosis.
    [Abstract] [Full Text] [Related] [New Search]