These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Support Morphology-Dependent Catalytic Activity of Pd/CeO₂ for Formaldehyde Oxidation. Author: Tan H, Wang J, Yu S, Zhou K. Journal: Environ Sci Technol; 2015 Jul 21; 49(14):8675-82. PubMed ID: 26120873. Abstract: To eliminate indoor formaldehyde (HCHO) pollution, Pd/CeO2 catalysts with different morphologies of ceria support were employed. The palladium nanoparticles loaded on {100}-faceted CeO2 nanocubes exhibited much higher activity than those loaded on {111}-faceted ceria nanooctahedrons and nanorods (enclosed by {100} and {111} facets). The HCHO could be fully converted into CO2 over the Pd/CeO2 nanocubes at a GHSV of 10,000 h(-1) and a HCHO inlet concentration of 600 ppm at ambient temperature. The prepared catalysts were characterized by a series of techniques. The HRTEM, ICP-MS and XRD results confirmed the exposed facets of the ceria and the sizes (1-2 nm) of the palladium nanoparticles with loading amounts close to 1%. According to the Pd 3d XPS and H2-TPR results, the status of the Pd-species was dependent on the morphologies of the supports. The {100} facets of ceria could maintain the metallic Pd species rather than the {111} facets, which promoted HCHO catalytic combustion. The Raman and O 1s XPS results revealed that the nanorods with more defect sites and oxygen vacancies were responsible for the easy oxidation of the Pd-species and low catalytic activity.[Abstract] [Full Text] [Related] [New Search]