These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Temporal trends in bisphenol A exposure in the United States from 2003-2012 and factors associated with BPA exposure: Spot samples and urine dilution complicate data interpretation.
    Author: LaKind JS, Naiman DQ.
    Journal: Environ Res; 2015 Oct; 142():84-95. PubMed ID: 26121292.
    Abstract:
    Nationally representative data on urinary levels of BPA and its metabolites in the United States from the 2003-2004 to 2011-2012 National Health and Nutrition Examination Surveys (NHANES) were used to estimate daily BPA intakes and examine temporal trends. Additionally, NHANES data on lifestyle/demographic/dietary factors previously reported to be associated with BPA exposures were examined to assess the resiliency of the reported associations (whether the association is maintained across the five surveys). Finally, various approaches for addressing issues with the use of BPA concentration data from spot urine samples were examined for their effect on trends and associations. Three approaches were assessed here: (i) use of generic literature-based 24-h urine excretion volumes, (ii) use of creatinine adjustments, and (iii) use of individual urine flow rate data from NHANES. Based on 2011-2012 NHANES urinary BPA data and assumptions described in this paper, the median daily intake for the overall population is approximately 25 ng/kg day; median intake estimates were approximately two to three orders of magnitude below current health-based guidance values. Estimates of daily BPA intake have decreased significantly compared to those from the 2003-2004 NHANES. Estimates of associations between lifestyle/demographic/dietary factors and BPA exposure revealed inconsistencies related to both NHANES survey year and the three approaches listed above; these results demonstrate the difficulties in interpreting urinary BPA data, despite efforts to account for urine dilution and translation of spot sample data to 24-h data. The results further underscore the importance of continued research on how to best utilize urinary measures of environmental chemicals in exposure research. Until a consensus is achieved regarding the best biomonitoring approaches for assessing exposures to short-lived chemicals using urine samples, research on factors associated with BPA exposures should include - and report results from - assessments using both volume-based urinary BPA and creatinine-adjusted urinary BPA data.
    [Abstract] [Full Text] [Related] [New Search]