These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reactive red 120 retention through ultrafiltration enhanced by synthetic and natural polyelectrolytes.
    Author: Dasgupta J, Sikder J, Mandal T, Adhikari U.
    Journal: J Hazard Mater; 2015 Dec 15; 299():192-205. PubMed ID: 26124065.
    Abstract:
    Two cationic chelating polymers, namely synthetic polyethylenimine (PEI), and biopolymer chitosan were employed in the present study to bring about the retention of anionic reactive red 120 (RR 120) from its aqueous solutions by way of polymer enhanced ultrafiltration (PEUF). The effects of process parameters, namely, cross-flow rate, transmembrane pressure, time, polyelectrolyte loading, and ionic strength on dye retention and permeation flux were examined. PEI enhanced ultrafiltration achieved dye retentions as high as 99.9%, and significant permeation fluxes around 148 L/m(2)h. However, in case of chitosan, relatively low retention (88%), and flux (120 L/m(2)h) levels were observed. A careful comparison of the changes induced in the UV-vis spectra of RR 120 by PEI and chitosan indicated a predominant electrostatic interaction between PEI and RR 120, as opposed to the relatively weak and sterically as well as chemically hindered interaction between chitosan and the dye ion. The respective binding constants of PEI-RR 120, and PEI-chitosan complexes, in addition to the relatively more pronounced permeation flux decline witnessed in the presence of chitosan, clearly advocated the use of PEI, rather than chitosan, as the most appropriate complexing agent in the present context.
    [Abstract] [Full Text] [Related] [New Search]