These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. Author: Radecka D, Mukherjee V, Mateo RQ, Stojiljkovic M, Foulquié-Moreno MR, Thevelein JM. Journal: FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26126524. Abstract: Saccharomyces cerevisiae has been used for millennia in the production of food and beverages and is by far the most studied yeast species. Currently, it is also the most used microorganism in the production of first-generation bioethanol from sugar or starch crops. Second-generation bioethanol, on the other hand, is produced from lignocellulosic feedstocks that are pretreated and hydrolyzed to obtain monomeric sugars, mainly D-glucose, D-xylose and L-arabinose. Recently, S. cerevisiae recombinant strains capable of fermenting pentose sugars have been generated. However, the pretreatment of the biomass results in hydrolysates with high osmolarity and high concentrations of inhibitors. These compounds negatively influence the fermentation process. Therefore, robust strains with high stress tolerance are required. Up to now, more than 2000 yeast species have been described and some of these could provide a solution to these limitations because of their high tolerance to the most predominant stress conditions present in a second-generation bioethanol reactor. In this review, we will summarize what is known about the non-conventional yeast species showing unusual tolerance to these stresses, namely Zygosaccharomyces rouxii (osmotolerance), Kluyveromyces marxianus and Ogataea (Hansenula) polymorpha (thermotolerance), Dekkera bruxellensis (ethanol tolerance), Pichia kudriavzevii (furan derivatives tolerance) and Z. bailii (acetic acid tolerance).[Abstract] [Full Text] [Related] [New Search]