These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sub-Doppler infrared spectroscopy of propargyl radical (H2CCCH) in a slit supersonic expansion.
    Author: Chang CH, Nesbitt DJ.
    Journal: J Chem Phys; 2015 Jun 28; 142(24):244313. PubMed ID: 26133434.
    Abstract:
    The acetylenic CH stretch mode (ν1) of propargyl (H2CCCH) radical has been studied at sub-Doppler resolution (∼60 MHz) via infrared laser absorption spectroscopy in a supersonic slit-jet discharge expansion, where low rotational temperatures (Trot = 13.5(4) K) and lack of spectral congestion permit improved determination of band origin and rotational constants for the excited state. For the lowest J states primarily populated in the slit jet cooled expansion, fine structure due to the unpaired electron spin is resolved completely, which permits accurate analysis of electron spin-rotation interactions in the vibrationally excited states (εaa = - 518.1(1.8), εbb = - 13.0(3), εcc = - 1.8(3) MHz). In addition, hyperfine broadening in substantial excess of the sub-Doppler experimental linewidths is observed due to nuclear spin-electron spin contributions at the methylenic (-CH2) and acetylenic (-CH) positions, which permits detailed modeling of the fine/hyperfine structure line contours. The results are consistent with a delocalized radical spin density extending over both methylenic and acetylenic C atoms, in excellent agreement with simple resonance structures as well as ab initio theoretical calculations.
    [Abstract] [Full Text] [Related] [New Search]