These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pathogenesis of Bolivian Hemorrhagic Fever in Guinea Pigs.
    Author: Bell TM, Bunton TE, Shaia CI, Raymond JW, Honnold SP, Donnelly GC, Shamblin JD, Wilkinson ER, Cashman KA.
    Journal: Vet Pathol; 2016 Jan; 53(1):190-9. PubMed ID: 26139838.
    Abstract:
    Machupo virus, the cause of Bolivian hemorrhagic fever, is a highly lethal viral hemorrhagic fever with no Food and Drug Administration-approved vaccines or therapeutics. This study evaluated the guinea pig as a model using the Machupo virus-Chicava strain administered via aerosol challenge. Guinea pigs (Cavia porcellus) were serially sampled to evaluate the temporal progression of infection, gross and histologic lesions, and sequential changes in serum chemistry and hematology. The incubation period was 5 to 12 days, and complete blood counts revealed leukopenia with lymphopenia and thrombocytopenia. Gross pathologic findings included congestion and hemorrhage of the gastrointestinal mucosa and serosa, noncollapsing lungs with fluid exudation, enlarged lymph nodes, and progressive pallor and friability of the liver. Histologic lesions consisted of foci of degeneration and cell death in the haired skin, liver, pancreas, adrenal glands, lymph nodes, tongue, esophagus, salivary glands, renal pelvis, small intestine, and large intestine. Lymphohistiocytic interstitial pneumonia was also present. Inflammation within the central nervous system, interpreted as nonsuppurative encephalitis, was histologically apparent approximately 16 days postexposure and was generally progressive. Macrophages in the tracheobronchial lymph node, on day 5 postexposure, were the first cells to demonstrate visible viral antigen. Viral antigen was detected throughout the lymphoid system by day 9 postexposure, followed by prominent spread within epithelial tissues and then brain. This study provides insight into the course of Machupo virus infection and supports the utility of guinea pigs as an additional animal model for vaccine and therapeutic development.
    [Abstract] [Full Text] [Related] [New Search]