These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Author: Liu W, Jalewa J, Sharma M, Li G, Li L, Hölscher C. Journal: Neuroscience; 2015 Sep 10; 303():42-50. PubMed ID: 26141845. Abstract: Glucagon-like peptide 1 (GLP-1) is a growth factor. GLP-1 mimetics are on the market as treatments for type 2 diabetes and are well tolerated. These drugs have shown neuroprotective properties in animal models of neurodegenerative disorders. In addition, the GLP-1 mimetic exendin-4 has shown protective effects in animal models of Parkinson's disease (PD), and a clinical trial in PD patients showed promising first results. Liraglutide and lixisenatide are two newer GLP-1 mimetics which have a longer biological half-life than exendin-4. We previously showed that these drugs have neuroprotective properties in an animal model of Alzheimer's disease. Here we demonstrate the neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP was injected once-daily (20mg/kg i.p.) for 7 days, and drugs were injected once-daily for 14 days i.p. When comparing exendin-4 (10 nmol/kg), liraglutide (25 nmol/kg) and lixisenatide (10 nmol/kg), it was found that exendin-4 showed no protective effects at the dose chosen. Both liraglutide and lixisenatide showed effects in preventing the MPTP-induced motor impairment (Rotarod, open-field locomotion, catalepsy test), reduction in tyrosine hydroxylase (TH) levels (dopamine synthesis) in the substantia nigra and basal ganglia, a reduction of the pro-apoptotic signaling molecule BAX and an increase in the anti-apoptotic signaling molecule B-cell lymphoma-2. The results demonstrate that in this study, both liraglutide and lixisenatide are superior to exendin-4, and both drugs show promise as a novel treatment of PD.[Abstract] [Full Text] [Related] [New Search]