These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: PPAR-α activation reduced LPS-induced inflammation in alveolar epithelial cells.
    Author: Hecker M, Behnk A, Morty RE, Sommer N, Vadász I, Herold S, Seeger W, Mayer K.
    Journal: Exp Lung Res; 2015; 41(7):393-403. PubMed ID: 26151160.
    Abstract:
    PURPOSE OF THE STUDY: Acute respiratory distress syndrome (ARDS) represents a major cause of mortality in intensive care patients. Activation of peroxisome proliferator-activated receptor-α (PPAR-α) by fibrates, such as WY-14643 (WY), has been described to beneficially influence inflammation and experimental lung injury. The impact of PPAR-α activation on alveolar epithelial cells (AEC) has not been studied yet. MATERIALS AND METHODS: To investigate the effect of PPAR-α activator WY in wild-type (WT) and in PPAR-α knockout (PPAR-α(-/-)) animals, mice were treated in different regimes: mice received chow enriched with or without WY for 14 days prior AEC isolation (in-vivo treatment). Furthermore, isolated AEC from both groups were subsequently cultured with or without WY (in-vitro treatment). AEC were stimulated with lipopolysaccharide (LPS). Cell culture supernatant and cell lysate were used for analysis of pro-inflammatory mediators. RESULTS: AEC challenged with LPS showed a significantly increased generation of pro-inflammatory mediators. After in-vivo WY-exposure, AEC displayed significantly reduced concentration of TNF-α, MIP-2, and TxB2 after LPS stimulation. This beneficial effect was abrogated in PPAR-α(-/-) animals. Interestingly, sole in-vitro application of WY-14643 failed to reduce levels of pro-inflammatory mediators whereas we found an additive effect of a combined in-vivo and in-vitro PPAR-α activation. PGE2 concentration remained high after LPS challenge and was unaffected by WY treatment. CONCLUSION: PPAR-α activation by in-vivo exposure to fibrates reduced the inflammatory response in isolated AEC. These findings may facilitate further studies investigating the translation of pharmacological PPAR-α activation into clinical therapy of ARDS.
    [Abstract] [Full Text] [Related] [New Search]