These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Muscle activation during three sets to failure at 80 vs. 30% 1RM resistance exercise. Author: Jenkins ND, Housh TJ, Bergstrom HC, Cochrane KC, Hill EC, Smith CM, Johnson GO, Schmidt RJ, Cramer JT. Journal: Eur J Appl Physiol; 2015 Nov; 115(11):2335-47. PubMed ID: 26159316. Abstract: PURPOSE: The purpose of this study was to investigate electromyographic amplitude (EMG AMP), EMG mean power frequency (MPF), exercise volume (VOL), total work and muscle activation (iEMG), and time under concentric load (TUCL) during, and muscle cross-sectional area (mCSA) before and after 3 sets to failure at 80 vs. 30 % 1RM resistance exercise. METHODS: Nine men (mean ± SD, age 21.0 ± 2.4 years, resistance training week(-1) 6.0 ± 3.7 h) and 9 women (age 22.8 ± 3.8 years, resistance training week(-1) 3.4 ± 3.5 h) completed 1RM testing, followed by 2 experimental sessions during which they completed 3 sets to failure of leg extension exercise at 80 or 30 % 1RM. EMG signals were collected to quantify EMG AMP and MPF during the initial, middle, and last repetition of each set. Ultrasound was used to assess mCSA pre- and post-exercise, and VOL, total work, iEMG, and TUCL were calculated. RESULTS: EMG AMP remained greater at 80 % than 30 % 1RM across all reps and sets, despite increasing 74 and 147 % across reps at 80 and 30 % 1RM, respectively. EMG MPF decreased across reps at 80 and 30 % 1RM, but decreased more and was lower for the last reps at 30 than 80 % 1RM (71.6 vs. 78.1 % MVIC). mCSA increased more from pre- to post-exercise for 30 % (20.2-24.1 cm(2)) than 80 % 1RM (20.3-22.8 cm(2)). VOL, total work, iEMG and TUCL were greater for 30 % than 80 % 1RM. CONCLUSION: Muscle activation was greater at 80 % 1RM. However, differences in volume, metabolic byproduct accumulation, and muscle swelling may help explain the unexpected adaptations in hypertrophy vs. strength observed in previous studies.[Abstract] [Full Text] [Related] [New Search]