These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of acrylamide and 2,5-hexanedione on brain mitochondrial respiration. Author: Medrano CJ, LoPachin RM. Journal: Neurotoxicology; 1989; 10(2):249-55. PubMed ID: 2616066. Abstract: The effects of acrylamide (ACR) and 2,5-hexanedione (2,5-HD) on brain mitochondrial respiration were assessed. Mitochondria were isolated from whole brains or brain regions of control and neurotoxicant-treated rats. Direct in vitro exposure of isolated brain mitochondria to ACR (1 mM final concentration) had no effect on respiration, whereas direct exposure to 2,5-HD (1 mM final concentration) inhibited state 3 respiration. Chronic treatment of rats with ACR (50 mg/kg/day x 10 days) did not affect respiration of mitochondria isolated from cortex or brainstem. However, in mitochondria from cerebellum of ACR treated rats, pyruvate + oxaloacetic acid (pyr/oaa) supported oxygen consumption was decreased significantly in both states 3 and 4. In addition, the ADP/O ratio was reduced in this brain structure. In all brain regions of 2,5-HD (400 mg/kg/day x 24 days) intoxicated rats, pyr/oaa supported state 3 respiration was reduced. Glutamate + malate (glu/mal) supported respiration was diminished only in mitochondria isolated from brain stem of 2,5-HD treated rats. In contrast, the non-neurotoxic analogs, 1,6-hexanediol and N,N'-methylene-bis-acrylamide did not alter mitochondrial respiration in parallel experiments. Thus, both ACR and 2,5-HD produce a substrate-dependent, toxicologically specific inhibition of brain mitochondrial respiration. This inhibition of mitochondrial energy production might play a role in the neurotoxic mechanisms of action for these chemicals.[Abstract] [Full Text] [Related] [New Search]