These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Understanding hind limb lameness signs in horses using simple rigid body mechanics. Author: Starke SD, May SA, Pfau T. Journal: J Biomech; 2015 Sep 18; 48(12):3323-31. PubMed ID: 26163753. Abstract: Hind limb lameness detection in horses relies on the identification of movement asymmetry which can be based on multiple pelvic landmarks. This study explains the poorly understood relationship between hind limb lameness pointers, related to the tubera coxae and sacrum, based on experimental data in context of a simple rigid body model. Vertical displacement of tubera coxae and sacrum was quantified experimentally in 107 horses with varying lameness degrees. A geometrical rigid-body model of pelvis movement during lameness was created in Matlab. Several asymmetry measures were calculated and contrasted. Results showed that model predictions for tubera coxae asymmetry during lameness matched experimental observations closely. Asymmetry for sacrum and comparative tubera coxae movement showed a strong association both empirically (R(2)≥ 0.92) and theoretically. We did not find empirical or theoretical evidence for a systematic, pronounced adaptation in the pelvic rotation pattern with increasing lameness. The model showed that the overall range of movement between tubera coxae does not allow the appreciation of asymmetry changes beyond mild lameness. When evaluating movement relative to the stride cycle we did find empirical evidence for asymmetry being slightly more visible when comparing tubera coxae amplitudes rather than sacrum amplitudes, although variation exists for mild lameness. In conclusion, the rigidity of the equine pelvis results in tightly linked movement trajectories of different pelvic landmarks. The model allows the explanation of empirical observations in the context of the underlying mechanics, helping the identification of potentially limited assessment choices when evaluating gait.[Abstract] [Full Text] [Related] [New Search]