These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cu²⁺ functionalized N-acetyl-L-cysteine capped CdTe quantum dots as a novel resonance Rayleigh scattering probe for the recognition of phenylalanine enantiomers. Author: Yang J, Tan X, Zhang X, Yang Q, Shen Y. Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():591-7. PubMed ID: 26163781. Abstract: A simple protocol that can be used to simultaneously determinate enantiomers is extremely intriguing and useful. In this study, we proposed a low-cost, facile, sensitive method for simultaneous determination. The molecular recognition of Cu(2+) functionalized N-acetyl-l-cysteine capped CdTe quantum dots (Cu(2+)-NALC/CdTe QDs) with phenylalanine (PA) enantiomers was investigated based on the resonance Rayleigh scattering (RRS) spectral technique. The RRS intensity of NALC/CdTe QDs is very weak, but Cu(2+) functionalized NALC/CdTe QDs have extremely high RRS intensity, the most important observations are that PA could quench the RRS intensity of Cu(2+)-NALC/CdTe QDs, and that l-PA and d-PA have different degree of influence. In addition, those experimental factors such as acidity, concentration of Cu(2+) and reaction time were investigated in regards to their effects on enantioselective interaction. Finally, the applicability of the chiral recognized sensor for the analysis of chiral mixtures on enantiomers has been demonstrated, and the results that were obtained high precision (<4.63%) and low error (<3.06%).[Abstract] [Full Text] [Related] [New Search]