These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Defining the Contribution of MC1R Physiological Ligands to ATR Phosphorylation at Ser435, a Predictor of DNA Repair in Melanocytes. Author: Jarrett SG, Wolf Horrell EM, Boulanger MC, D'Orazio JA. Journal: J Invest Dermatol; 2015 Dec; 135(12):3086-3095. PubMed ID: 26168232. Abstract: The melanocortin 1 receptor (MC1R), a GS-coupled receptor that signals through cAMP and protein kinase A (PKA), regulates pigmentation, adaptive tanning, and melanoma resistance. MC1R-cAMP signaling promotes PKA-mediated phosphorylation of ataxia telangiectasia and rad3-related (ATR) at Ser435 (ATR-pS435), a modification that enhances nucleotide excision repair (NER) by facilitating recruitment of the XPA protein to sites of UV-induced DNA damage. High-throughput methods were developed to quantify ATR-pS435, measure XPA-photodamage interactions, and assess NER function. We report that melanocyte-stimulating hormone (α-MSH) or ACTH induce ATR-pS435, enhance XPA's association with UV-damaged DNA and optimize melanocytic NER. In contrast, MC1R antagonists agouti signaling protein (ASIP) or human β-defensin 3 (HBD3) interfere with ATR-pS435 generation, impair the XPA-DNA interaction, and reduce DNA repair. Although ASIP and HBD3 each blocked α-MSH-mediated induction of the signaling pathway, only ASIP depleted basal ATR-pS435. Our findings confirm that ASIP diminishes agonist-independent MC1R basal signaling whereas HBD3 is a neutral MC1R antagonist that blocks activation by melanocortins. Furthermore, our data suggest that ATR-pS435 may be a useful biomarker for the DNA repair-deficient MC1R phenotype.[Abstract] [Full Text] [Related] [New Search]