These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vivo analysis of Nef's role in HIV-1 replication, systemic T cell activation and CD4(+) T cell loss. Author: Watkins RL, Foster JL, Garcia JV. Journal: Retrovirology; 2015 Jul 14; 12():61. PubMed ID: 26169178. Abstract: BACKGROUND: Nef is a multifunctional HIV-1 protein critical for progression to AIDS. Humans infected with nef(-) HIV-1 have greatly delayed or no disease consequences. We have contrasted nef(-) and nef(+) infection of BLT humanized mice to better characterize Nef's pathogenic effects. RESULTS: Mice were inoculated with CCR5-tropic HIV-1JRCSF (JRCSF) or JRCSF with an irreversibly inactivated nef (JRCSFNefdd). In peripheral blood (PB), JRCSF exhibited high levels of viral RNA (peak viral loads of 4.71 × 10(6) ± 1.23 × 10(6) copies/ml) and a progressive, 75% loss of CD4(+) T cells over 17 weeks. Similar losses were observed in CD4(+) T cells from bone marrow, spleen, lymph node, lung and liver but thymocytes were not significantly decreased. JRCSFNefdd also had high peak viral loads (2.31 × 10(6) ± 1.67 × 10(6)) but induced no loss of PB CD4(+) T cells. In organs, JRCSFNefdd produced small, but significant, reductions in CD4(+) T cell levels and did not affect the level of thymocytes. Uninfected mice have low levels of HLA-DR(+)CD38(+)CD8(+) T cells in blood (1-2%). Six weeks post inoculation, JRCSF infection resulted in significantly elevated levels of activated CD8(+) T cells (6.37 ± 1.07%). T cell activation coincided with PB CD4(+) T cell loss which suggests a common Nef-dependent mechanism. At 12 weeks, in JRCSF infected animals PB T cell activation sharply increased to 19.7 ± 2.9% then subsided to 5.4 ± 1.4% at 14 weeks. HLA-DR(+)CD38(+)CD8(+) T cell levels in JRCSFNefdd infected mice did not rise above 1-2% despite sustained high levels of viremia. Interestingly, we also noted that in mice engrafted with human tissue expressing a putative protective HLA-B allele (B42:01), JRCSFNefdd exhibited a substantial (200-fold) reduced viral load compared to JRCSF. CONCLUSIONS: Nef expression was necessary for both systemic T cell activation and substantial CD4(+) T cell loss from blood and tissues. JRCSFNefdd infection did not activate CD8(+) T cells or reduce the level of CD4(+) T cells in blood but did result in a small Nef-independent decrease in CD4(+) T cells in organs. These observations strongly support the conclusion that viral pathogenicity is mostly driven by Nef. We also observed for the first time substantial host-specific suppression of HIV-1 replication in a small animal infection model.[Abstract] [Full Text] [Related] [New Search]