These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Detection of Escherichia coli in drinking water using T7 bacteriophage-conjugated magnetic probe.
    Author: Chen J, Alcaine SD, Jiang Z, Rotello VM, Nugen SR.
    Journal: Anal Chem; 2015 Sep 01; 87(17):8977-84. PubMed ID: 26172120.
    Abstract:
    In this study, we demonstrate a bacteriophage (phage)-based magnetic separation scheme for the rapid detection of Escherichia coli (E. coli) in drinking water. T7 phage is a lytic phage with a broad host range specificity for E. coli. Our scheme was as follows: (1) T7 bacteriophage-conjugated magnetic beads were used to capture and separate E. coli BL21 from drinking water; (2) subsequent phage-mediated lysis was used to release endemic β-galactosidase (β-gal) from the bound bacterial cells; (3) the release of β-gal was detected using chlorophenol red-β-d-galactopyranoside (CRPG), a colorimetric substrate which changes from yellow to red in the presence of β-gal. Using this strategy, we were able to detect E. coli at a concentration of 1 × 10(4) CFU·mL(-1) within 2.5 h. The specificity of the proposed magnetic probes toward E. coli was demonstrated against a background of competing bacteria. By incorporating a pre-enrichment step in Luria-Bertani (LB) broth supplemented with isopropyl β-d-thiogalactopyranoside (IPTG), we were able to detect 10 CFU·mL(-1) in drinking water after 6 h of pre-enrichment. The colorimetric change can be determined either by visual observation or with a reader, allowing for a simple, rapid quantification of E. coli in resource-limited settings.
    [Abstract] [Full Text] [Related] [New Search]