These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Root precursors of microRNAs in wild emmer and modern wheats show major differences in response to drought stress. Author: Akpinar BA, Kantar M, Budak H. Journal: Funct Integr Genomics; 2015 Sep; 15(5):587-98. PubMed ID: 26174050. Abstract: MicroRNAs, small regulatory molecules with significant impacts on the transcriptional network of all living organisms, have been the focus of several studies conducted mostly on modern wheat cultivars. In this study, we investigated miRNA repertoires of modern durum wheat and its wild relatives, with differing degrees of drought tolerance, to identify miRNA candidates and their targets involved in drought stress response. Root transcriptomes of Triticum turgidum ssp. durum variety Kızıltan and two Triticum turgidum ssp. dicoccoides genotypes TR39477 and TTD-22 under control and drought conditions were assembled from individual RNA-Seq reads and used for in silico identification of miRNAs. A total of 66 miRNAs were identified from all species, across all conditions, of which 46 and 38 of the miRNAs identified from modern durum wheat and wild genotypes, respectively, had not been previously reported. Genotype- and/or stress-specific miRNAs provide insights into our understanding of the complex drought response. Particularly, miR1435, miR5024, and miR7714, identified only from drought-stress roots of drought-tolerant genotype TR39477, can be candidates for future studies to explore and exploit the drought response to develop tolerant varieties.[Abstract] [Full Text] [Related] [New Search]