These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanistic model coupling gas exchange dynamics and Listeria monocytogenes growth in modified atmosphere packaging of non respiring food. Author: Chaix E, Broyart B, Couvert O, Guillaume C, Gontard N, Guillard V. Journal: Food Microbiol; 2015 Oct; 51():192-205. PubMed ID: 26187845. Abstract: A mechanistic model coupling O2 and CO2 mass transfer (namely diffusion and solubilisation in the food itself and permeation through the packaging material) to microbial growth models was developed aiming at predicting the shelf life of modified atmosphere packaging (MAP) systems. It was experimentally validated on a non-respiring food by investigating concomitantly the O2/CO2 partial pressure in packaging headspace and the growth of Listeria monocytogenes (average microbial count) within the food sample. A sensitivity analysis has revealed that the reliability of the prediction by this "super-parametrized" model (no less than 47 parameters were required for running one simulation) was strongly dependent on the accuracy of the microbial input parameters. Once validated, this model was used to decipher the role of O2/CO2 mass transfer on microbial growth and as a MAP design tool: an example of MAP dimensioning was provided in this paper as a proof of concept.[Abstract] [Full Text] [Related] [New Search]