These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Three-dimensional co-culture of BM-MSCs and eccrine sweat gland cells in Matrigel promotes transdifferentiation of BM-MSCs. Author: Li H, Li X, Zhang M, Chen L, Zhang B, Tang S, Fu X. Journal: J Mol Histol; 2015 Oct; 46(4-5):431-8. PubMed ID: 26189057. Abstract: Victims with extensive and deep burns are unable to regenerate eccrine sweat glands. Combining of stem cells and biomimetic ECM to generate cell-based 3D tissues is showing promise for tissue repair and regeneration. We co-cultured BrdU-labeled bone marrow-derived mesenchymal stem cells (BM-MSCs) and eccrine sweat gland cells in Matrigel for 2 weeks in vitro and then evaluated for BM-MSCs differentiation into functional eccrine sweat gland cells by morphological assessment and immunohistochemical double staining for BrdU/pancytokeratin, BrdU/ZO-2, BrdU/E-cadherin, BrdU/desmoglein-2, BrdU/Na(+)-K(+)-ATPase α, BrdU/NHE1 and BrdU/CFTR. Cells formed spheroid-like structures in Matrigel, and BrdU-labeled BM-MSCs were involved in the 3D reconstitution of eccrine sweat gland tissues, and the incorporated BM-MSCs expressed an epithelial cell marker (pancytokeratin), epithelial cell junction proteins (ZO-2, E-cadherin and desmoglein-2) and functional proteins of eccrine sweat glands (Na(+)-K(+)-ATPase α, NHE1 and CFTR). In conclusion, three-dimensional co-culture of BM-MSCs and eccrine sweat gland cells in Matrigel promotes the transdifferentiation of BM-MSCs into potentially functional eccrine sweat gland cells.[Abstract] [Full Text] [Related] [New Search]