These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: PPARα/γ agonists and antagonists differently affect hepatic lipid metabolism, oxidative stress and inflammatory cytokine production in steatohepatitic rats. Author: Zhang Y, Cui Y, Wang XL, Shang X, Qi ZG, Xue J, Zhao X, Deng M, Xie ML. Journal: Cytokine; 2015 Sep; 75(1):127-35. PubMed ID: 26194065. Abstract: Peroxisome proliferator-activated receptor (PPAR) α/γ may control lipid metabolism and inflammatory response by regulating the downstream target genes, and play a crucial role in the process of non-alcoholic steatohepatitis (NASH) formation, but the difference and interaction between PPARα and PPARγ are poorly understood. The rat model with NASH was established by orally feeding high-fat and high-sucrose emulsion for 6weeks. The results shown that after the model rats were simultaneously treated with PPARα/γ agonists, the total cholesterol (TC), triglyceride (TG) and inflammatory cytokine levels in serum and hepatic tissue, the hepatic steatosis and inflammatory cellular infiltration were decreased, and were consistent with the results of hepatic lipogenic gene and nuclear factor (NF)-κB protein expressions. Conversely, these indexes were increased by PPARα/γ antagonist treatment. Compared with the model group, the serum free fatty acid (FFA) level was increased in the PPARα agonist-treated group, decreased in the PPARγ agonist-treated group, and unchanged in the PPARα/γ agonists-treated group. The hepatic FFA level was low in the PPARα/γ agonists-treated groups, but no significant variation in the PPARα/γ antagonists-treated groups. The increments of hepatic reduced glutathione (GSH) and superoxide dismutase (SOD) contents in the PPARα/γ agonists-treated groups were accompanied by decreased hepatic malondialdehyde (MDA) content. These findings demonstrated that PPARα/γ activation might decrease the hepatic lipid accumulation, oxidative stress and inflammatory cytokine production, and PPARγ could counterbalance the adverse effect of PPARα on circulating FFA. It was concluded that the integrative application of PPARα and PPARγ agonists might exert a synergic inhibitory effect on NASH formation through the modulation of PPARα/γ-mediated lipogenic and inflammatory gene expressions.[Abstract] [Full Text] [Related] [New Search]