These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Recognition and identification of active components from Radix Bupleuri using human neuroblastoma SH-SY5Y cells. Author: Zhang Y, Liu F, Zhang X, Xu T, Quan W, Wang H, Shi J, Dai Z, Wu B, Wu Q. Journal: Biomed Chromatogr; 2016 Mar; 30(3):440-6. PubMed ID: 26194341. Abstract: The aim of the study was to screen active components of Radix Bupleuri (a traditional Chinese herb) and discover novel anti-schizophrenic candidate drugs using human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were used for preparation of the stationary phase in the cell membrane chromatography model. Retention components by the SH-SY5Y/CMC model were collected and then analyzed by GC/MS under the optimized conditions in offline conditions. After investigating the suitability and reliability of the SH-SY5Y/CMC method using amisulpride and haloperidol as standard compounds, this method was applied to screening active components from the extracts of Radix Bupleuri. Retention components of SH-SY5Y/CMC model were saikosaponin A, saikosaponin B1, saikosaponin B2, saikosaponin C and saikosaponin D, which were identified by the GC/MS method. In vitro pharmacological trials-MTT, saikosaponin B1, saikosaponin B2 and saikosaponin C could protect SY5Y cells. The protective effects of saikosaponin B1 and saikosaponin C were concentration dependent. Saikosaponin A and saikosaponin D inhibited cell viability at concentrations >30 µg/mL (p < 0.05). Via SH-SY5Y/CMC method and SH-SY5Y MTT trial, we rapidly detected target components from Radix Bupleuri, accurately identified them and determined their different effects on SH-SY5Y cells. Saikosaponin B1, saikosaponin B2 and saikosaponin C may be anti-schizophrenic candidate drugs.[Abstract] [Full Text] [Related] [New Search]