These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The SR/ER-mitochondria calcium crosstalk is regulated by GSK3β during reperfusion injury. Author: Gomez L, Thiebaut PA, Paillard M, Ducreux S, Abrial M, Crola Da Silva C, Durand A, Alam MR, Van Coppenolle F, Sheu SS, Ovize M. Journal: Cell Death Differ; 2016 Feb; 23(2):313-22. PubMed ID: 26206086. Abstract: Glycogen synthase kinase-3β (GSK3β) is a multifunctional kinase whose inhibition is known to limit myocardial ischemia-reperfusion injury. However, the mechanism mediating this beneficial effect still remains unclear. Mitochondria and sarco/endoplasmic reticulum (SR/ER) are key players in cell death signaling. Their involvement in myocardial ischemia-reperfusion injury has gained recognition recently, but the underlying mechanisms are not yet well understood. We questioned here whether GSK3β might have a role in the Ca(2+) transfer from SR/ER to mitochondria at reperfusion. We showed that a fraction of GSK3β protein is localized to the SR/ER and mitochondria-associated ER membranes (MAMs) in the heart, and that GSK3β specifically interacted with the inositol 1,4,5-trisphosphate receptors (IP3Rs) Ca(2+) channeling complex in MAMs. We demonstrated that both pharmacological and genetic inhibition of GSK3β decreased protein interaction of IP3R with the Ca(2+) channeling complex, impaired SR/ER Ca(2+) release and reduced the histamine-stimulated Ca(2+) exchange between SR/ER and mitochondria in cardiomyocytes. During hypoxia reoxygenation, cell death is associated with an increase of GSK3β activity and IP3R phosphorylation, which leads to enhanced transfer of Ca(2+) from SR/ER to mitochondria. Inhibition of GSK3β at reperfusion reduced both IP3R phosphorylation and SR/ER Ca(2+) release, which consequently diminished both cytosolic and mitochondrial Ca(2+) concentrations, as well as sensitivity to apoptosis. We conclude that inhibition of GSK3β at reperfusion diminishes Ca(2+) leak from IP3R at MAMs in the heart, which limits both cytosolic and mitochondrial Ca(2+) overload and subsequent cell death.[Abstract] [Full Text] [Related] [New Search]