These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pathogen transcriptional profile in nasopharyngeal aspirates of children with acute respiratory tract infection. Author: Fukutani KF, Nascimento-Carvalho CM, Van der Gucht W, Wollants E, Khouri R, Dierckx T, Van Ranst M, Houspie L, Bouzas ML, Oliveira JR, Barral A, Van Weyenbergh J, de Oliveira CI. Journal: J Clin Virol; 2015 Aug; 69():190-6. PubMed ID: 26209405. Abstract: BACKGROUND: Acute respiratory tract infections (ARI) present a significant morbidity and pose a global health burden. Patients are frequently treated with antibiotics although ARI are most commonly caused by virus, strengthening the need for improved diagnostic methods. OBJECTIVES: Detect viral and bacterial RNA in nasopharyngeal aspirates (NPA) from children aged 6-23 months with ARI using nCounter. STUDY DESIGN: A custom-designed nCounter probeset containing viral and bacterial targets was tested in NPA of ARI patients. RESULTS: Initially, spiked control viral RNAs were detectable in ≥6.25 ng input RNA, indicating absence of inhibitors in NPA. nCounter applied to a larger NPA sample (n=61) enabled the multiplex detection of different pathogens: RNA viruses Parainfluenza virus (PIV 1-3) and RSV A-B in 21%, Human metapneumovirus (hMPV) in 5%, Bocavirus (BoV), CoV, Influenza virus (IV) A in 3% and, Rhinovirus (RV) in 2% of samples, respectively. RSV A-B was confirmed by Real Time PCR (86.2-96.9% agreement). DNA virus (AV) was detected at RNA level, reflecting viral replication, in 10% of samples. Bacterial transcripts from Staphylococcus aureus, Haemophilus influenzae, Streptococcus pneumoniae, Moraxella catarrhalis, Mycoplasma pneumoniae and Chlamydophila pneumoniae were detected in 77, 69, 26, 8, 3 and 2% of samples, respectively. CONCLUSION: nCounter is robust and sensitive for the simultaneous detection of viral (both RNA and DNA) and bacterial transcripts in NPA with low RNA input (<10 ng). This medium-throughput technique will increase our understanding of ARI pathogenesis and may provide an evidence-based approach for the targeted and rational use of antibiotics in pediatric ARI.[Abstract] [Full Text] [Related] [New Search]