These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Alpha-fetoprotein (AFP) modulates the effect of serum albumin on brain development by restraining the neurotrophic effect of oleic acid. Author: García-García AG, Polo-Hernández E, Tabernero A, Medina JM. Journal: Brain Res; 2015 Oct 22; 1624():45-58. PubMed ID: 26210615. Abstract: We have previously shown that serum albumin controls perinatal rat brain development through the regulation of oleic acid synthesis by astrocytes. In fact, oleic acid synthesized and released by astrocytes promoted neurite growth, neuron migration and the arrangement of prospective synapses. In this work we show that alpha-fetoprotein (AFP) is also present in the brain during embryonic development, its concentrations peaking at E15.5 and at E19.5. However, after E19.5 AFP concentrations plummeted concurrently with a sharp increase in serum albumin concentrations. At E15.5, AFP is present in caudal regions of the brain, particularly in brain areas undergoing differentiation during this period, such as the thalamic reticular nucleus of the thalamus, the hypothalamus, the amygdala and the hippocampus. Albumin was not detected in the brain at E15.5 but stained brain cells substantially on day E19.5, showing a very similar distribution to that of AFP under the same circumstances. The concentrations of free oleic acid in the brain were inversely correlated with those of AFP, suggesting that the signals elicited by AFP and oleic acid can be inversely associated. GAP-43, a marker of axonal growth that is highly expressed by the presence of oleic acid, was not co-localized with AFP except in the marginal zone and areas delimiting the subplate. AFP prevented the increase in GAP-43 expression caused by the presence of oleic acid in neurons in primary culture in vitro and in organotypic cultures of embryonic rat brain ex vivo, suggesting that AFP may modulate the effect of serum albumin on brain development.[Abstract] [Full Text] [Related] [New Search]