These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Exercise increases pyridinoline cross-linking and counters the mechanical effects of concurrent lathyrogenic treatment. Author: McNerny EMB, Gardinier JD, Kohn DH. Journal: Bone; 2015 Dec; 81():327-337. PubMed ID: 26211995. Abstract: The collagen cross-link profile of bone, associated with bone strength and fracture toughness, is tightly regulated (affecting cross-link quantity, type, lysine hydroxylation and maturity) and may contribute to the improvements in bone quality during exercise. We hypothesized that 1) exercise promotes mature cross-link formation, 2) increased mature cross-linking is accompanied by shifts in lysine hydroxylation, and 3) these changes in collagen cross-link profile have positive effects on mechanical properties. Growing male C57Bl6 mice were treated with 30 min/day of running exercise, 350 mg/kg/day β-aminopropionitrile (BAPN) injected subcutaneously to inhibit enzymatic collagen cross-linking, or both exercise and BAPN, from 5 to 8 weeks of age. Bone collagen cross-linking profile, mechanical properties, morphology, and mineralization were measured from the tibiae. Cross-link measures, including immature, pyridinoline, pyrrole and pentosidine cross-links, ratios reflecting cross-link maturity and hydroxylation, and mineralization were tested for their importance to mechanical properties across 8 week groups through correlation analyses and step-wise linear regressions. BAPN treatment significantly reduced lysylpyridinoline, pyrrole, hydroxylysinorleucine, and total mature collagen cross-linking, resulting in decreased bone elastic modulus and increased yield strain despite a marginal increase in TMD. Exercise caused a shift toward pyridinoline cross-linking, with increased hydroxylysylpyridinoline and decreased pyrrole cross-linking resulting in total mature cross-linking and estimated tissue level mechanical properties matching sedentary control levels. Exercise superimposed on BAPN treatment increased total mature cross-linking from BAPN to control levels, but did so by increasing pyridinoline, not pyrrole, cross-links. Exercise also counteracted the BAPN effects on modulus and strain, without a change in TMD. Pyrrole cross-linking was the strongest correlate of modulus (r=0.470, p<0.01) and yield strain (r=-0.467, p<0.01). Cross-links with similar levels of telopeptide lysine hydroxylation to pyrrole (lysylpyridinoline and hydroxylysinorleucine) also correlated with modulus and strain to a lesser extent. In conclusion, exercise in growing mice promotes pyridinoline collagen cross-linking in bone, the resulting increase in total mature cross-linking is sufficient to counteract the mechanical effects of concurrent cross-link inhibition, and this responsiveness to loading is a potential means by which exercise might improve bone quality in diseased or otherwise compromised bone.[Abstract] [Full Text] [Related] [New Search]