These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Voltage-activated currents recorded from rabbit pigmented ciliary body epithelial cells in culture. Author: Fain GL, Farahbakhsh NA. Journal: J Physiol; 1989 Nov; 418():83-103. PubMed ID: 2621623. Abstract: 1. The whole-cell recording mode of the patch-clamp technique was used to investigate the presence of voltage-activated currents in the isolated pigmented cells from the rabbit ciliary body epithelium grown in culture. 2. In Ringer solution with composition similar to that of the rabbit aqueous humour, depolarizing voltage steps activated a transient inward current and a delayed outward current, while hyperpolarization elicited an inwardly rectified current. 3. The depolarization-activated inward current was mainly carried by Na+ and was blocked by submicromolar concentrations of tetrodotoxin. This current in many cells was sufficiently large to produce a regenerative Na+ spike. 4. The depolarization-activated outward current was carried by K+ and blocked by external TEA and Ba2+. Its activation appeared to be Ca2(+)-independent. 5. The hyperpolarization-activated inward current was almost exclusively carried by K+ and was blocked by Ba2+ and Cs+. For large hyperpolarizations below -120 mV, this current exhibited a biphasic activation with a fast transient peak followed by a slower sag, that appeared to be due to K+ depletion. 6. The voltage-dependent K+ conductances probably act to stabilize the cell membrane resting potential and may also play a role in ion transport. The function of the Na(+)-dependent inward current is unclear, but it may permit the electrically coupled epithelial cells of the ciliary body to conduct propagated action potentials.[Abstract] [Full Text] [Related] [New Search]