These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hydrothermal Synthesis g-C3N4/Nano-InVO4 Nanocomposites and Enhanced Photocatalytic Activity for Hydrogen Production under Visible Light Irradiation. Author: Hu B, Cai F, Chen T, Fan M, Song C, Yan X, Shi W. Journal: ACS Appl Mater Interfaces; 2015 Aug 26; 7(33):18247-56. PubMed ID: 26222984. Abstract: We synthesized g-C3N4/nano-InVO4 heterojunction-type photocatalyts by in situ growth of InVO4 nanoparticles onto the surface of g-C3N4 sheets via a hydrothermal process. The results of SEM and TEM showed that the obtained InVO4 nanoparticles 20 nm in size dispersed uniformly on the surface of g-C3N4 sheets, which revealed that g-C3N4 sheets was probably a promising support for in situ growth of nanosize materials. The achieved intimate interface promoted the charge transfer and inhibited the recombination rate of photogenerated electron-hole pairs, which significantly improved the photocatalytic activity. A possible growth process of g-C3N4/nano-InVO4 nanocomposites was proposed based on different mass fraction of g-C3N4 content. The obtained g-C3N4/nano-InVO4 nanocomposites could achieve effective separation of charge-hole pairs and stronger reducing power, which caused enhanced H2 evolution from water-splitting compared with bare g-C3N4 sheets and g-C3N4/micro-InVO4 composites, respectively. As a result, the g-C3N4/nano-InVO4 nanocomposite with a mass ratio of 80:20 possessed the maximum photocatalytic activity for hydrogen production under visible-light irradiation.[Abstract] [Full Text] [Related] [New Search]