These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tumor-Homing Cell-Penetrating Peptide Linked to Colloidal Mesoporous Silica Encapsulated (-)-Epigallocatechin-3-gallate as Drug Delivery System for Breast Cancer Therapy in Vivo.
    Author: Ding J, Yao J, Xue J, Li R, Bao B, Jiang L, Zhu JJ, He Z.
    Journal: ACS Appl Mater Interfaces; 2015 Aug 19; 7(32):18145-55. PubMed ID: 26225796.
    Abstract:
    Chemotherapy is the use of chemical drugs to prevent cancer cell proliferation, invasion, and metastasis, but a serious obstacle is that chemotherapeutics strikes not only on cancerous cells, but also on normal cells. Thus, anticancer drugs without side effects should be developed and extracted. (-)-Epigallocatechin-3-gallate (EGCG), a major ingredient of green tea, possesses excellent medicinal values, such as anticancer effects, DNA-protective effects, etc. However, EGCG will be mostly metabolized if it is directly orally ingested. Here, we report a drug delivery system (DDS) for loading EGCG to enhance its stability, promising target and anticancer effects in vitro and in vivo. The designed DDS is composed of three main moieties: anticancer drug, EGCG; drug vector, colloidal mesoporous silica (CMS); target ligand, breast tumor-homing cell-penetrating peptide (PEGA-pVEC peptide). Based on the results of CCK-8 assay, confocal imaging, cell cycle analysis, and Western blot, the anticancer effect of EGCG was increased by loading of EGCG into CMS and CMS@peptide. In vivo treatment displayed that CMS had a not obvious influence on breast tumor bearing mice, but CMS@peptide@EGCG showed the greatest tumor inhibition rate, with about 89.66%. H&E staining of organs showed no tissue injury in all experimental groups. All the above results prove that EGCG is an excellent anticancer drug without side effects and CMS@peptide could greatly promote the efficacy of EGCG on breast tumors by targeted accumulation and release, which provide much evidence for the CMS@peptide as a promising and targeting vector for DDS.
    [Abstract] [Full Text] [Related] [New Search]