These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dual fluorescent protein-based bioassay system for the detection of genotoxic chemical substances in Saccharomyces cerevisiae. Author: Lu Y, Tian Y, Wang R, Wu Q, Zhang Y, Li X. Journal: Toxicol Mech Methods; 2015; 25(9):698-707. PubMed ID: 26228088. Abstract: A new reporter system has been developed for quantifying the activity of potentially DNA-damaging substances in the yeast Saccharomyces cerevisiae. The system relies on two different reporter genes, yEGFP and DsRed-Express2, to screen for DNA-damaging chemicals. The yEGFP gene is fused to the test promoter of RNR2, whose measurable signal has a dose-dependent relationship with DNA damage. The gene encoding DsRed-Express2 is fused to a constitutive promoter of GPD, providing an internal control for normalizing cell numbers in the assay. The dual fluorescent protein assay system is performed by sequentially measuring the yEGFP and DsRed-Express2 fluorescent intensity of the same sample, with the results expressed as the ratio of yEGFP to DsRed-Express2 intensity (yEGFP/DsRed-Express2). The yeast fluorescent protein reporter assay was performed in 96-well microtiter plates in the presence of different concentrations of test substances, which were then characterized. The assay was very efficient, high-throughput, and amenable to full automation. Here, we demonstrate that this system can be used as a biosensor to assess the genotoxic potential of drugs and other chemical substances.[Abstract] [Full Text] [Related] [New Search]