These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Noise-induced damage to ribbon synapses without permanent threshold shifts in neonatal mice.
    Author: Shi L, Guo X, Shen P, Liu L, Tao S, Li X, Song Q, Yu Z, Yin S, Wang J.
    Journal: Neuroscience; 2015 Sep 24; 304():368-77. PubMed ID: 26232715.
    Abstract:
    Recently, ribbon synapses to the hair cells (HCs) in the cochlea have become a novel site of interest in the investigation of noise-induced cochlear lesions in adult rodents (Kujawa and Liberman, 2009; Lin et al., 2011; Liu et al., 2012; Shi et al., 2013). Permanent noise-induced damage to this type of synapse can result in subsequent degeneration of spiral ganglion neurons (SGNs) in the absence of permanent changes to hearing sensitivity. To verify whether noise exposure during an early developmental period produces a similar impact on ribbon synapses, the present study examined the damaging effects of noise exposure in neonatal Kunming mice. The animals received exposure to broadband noise at 105-decibel (dB) sound pressure level (SPL) for 2h on either postnatal day 10 (P10d) or postnatal day 14 (P14d), and then hearing function (based on the auditory brainstem response (ABR)) and cochlear morphology were evaluated during either postnatal weeks 3-4 (P4w) or postnatal weeks 7-8 (P8w). There were no significant differences in the hearing threshold between noise-exposed and control animals, which suggests that noise did not cause permanent loss of hearing sensitivity. However, noise exposure did produce a significant loss of ribbon synapses, particularly in P14d mice, which continued to increase from P4w to P8w. Additionally, a corresponding reduction in the amplitude of compound action potential (CAP) was observed in the noise-exposed groups at P4w and P8w, and the CAP latency was elongated, indicating a change in synaptic function.
    [Abstract] [Full Text] [Related] [New Search]