These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mesenchymal stromal cells improve cardiac function and left ventricular remodeling in a heart transplantation model. Author: Montanari S, Dayan V, Yannarelli G, Billia F, Viswanathan S, Connelly KA, Keating A. Journal: J Heart Lung Transplant; 2015 Nov; 34(11):1481-8. PubMed ID: 26234284. Abstract: BACKGROUND: Ischemia/reperfusion (I/R) injury is an inevitable consequence of organ transplantation and a major determinant of patient and graft survival in heart transplantation. Bone marrow-mesenchymal stromal cell (BM-MSC) treatment is a potentially effective cell therapy for cardiac disease. We investigated the effects of intravenous delivery of BM-MSCs in the acute phase post-transplant in a heterotopic heart transplantation (HHT) model associated with I/R injury. METHODS: Hearts of wild-type Lewis (WT LEW) rats were harvested and transplanted heterotopically into the necks of recipient WT LEW rats. Forty-eight hours after HHT, BM-MSCs were injected intravenously into animals in the experimental group, whereas controls received normal saline (NS). RESULTS: Eight days after BM-MSC injection, fractional shortening of transplanted hearts was significantly higher and left ventricular systolic diameter was lower in the BM-MSC group compared with controls, whereas no differences were found 28 days after infusion. A reduction in ventricular remodeling and cardiac fibrosis was observed by histochemical analysis and confirmed by cardiac magnetic resonance imaging in the BM-MSC group. The perivascular stromal cells' density and the number of capillaries were increased whereas the number of apoptotic cells decreased significantly in transplanted hearts in the BM-MSC group compared with the NS group. CONCLUSIONS: We showed early improvement in cardiac function and subsequent enhanced ventricular remodeling, reduced cardiac fibrosis, augmented neo-vascularization and decreased cardiomyocyte apoptosis of the transplanted heart in a heterotopic transplantation model after intravenous infusion of BM-derived MSCs. Our data suggest that clinical studies with BM-MSCs are warranted to understand their effects on cardiac graft and transplant recipient survival.[Abstract] [Full Text] [Related] [New Search]