These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: New Insights on the Biophysical Interaction of Resveratrol with Biomembrane Models: Relevance for Its Biological Effects.
    Author: Neves AR, Nunes C, Reis S.
    Journal: J Phys Chem B; 2015 Sep 03; 119(35):11664-72. PubMed ID: 26237152.
    Abstract:
    Resveratrol has been widely studied because of its pleiotropic effects in cancer therapy, neuroprotection, and cardioprotection. It is believed that the interaction of resveratrol with biological membranes may play a key role in its therapeutic activity. The capacity of resveratrol to partition into lipid bilayers, its possible location within the membrane, and the influence of this compound on the membrane fluidity were investigated using membrane mimetic systems composed of egg l-α-phosphatidylcholine (EPC), cholesterol (CHOL), and sphingomyelin (SM). The results showed that resveratrol has greater affinity for the EPC bilayers than for EPC:CHOL [4:1] and EPC:CHOL:SM [1:1:1] membrane models. The increased difficulty in penetrating tight packed membranes is also demonstrated by fluorescence quenching of probes and by fluorescence anisotropy measurements. Resveratrol may be involved in the regulation of cell membrane fluidity, thereby contributing for cell homeostasis.
    [Abstract] [Full Text] [Related] [New Search]