These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The novel mTOR inhibitor Torin-2 induces autophagy and downregulates the expression of UHRF1 to suppress hepatocarcinoma cell growth. Author: Wang C, Wang X, Su Z, Fei H, Liu X, Pan Q. Journal: Oncol Rep; 2015 Oct; 34(4):1708-16. PubMed ID: 26239364. Abstract: Mammalian target of rapamycin (mTOR) is frequently upregulated in hepatocellular carcinoma (HCC). Blockage of mTOR was found to induce marked reduction in HCC growth in preclinical models. In the present study, we tested a novel mTOR inhibitor, Torin-2, for its antitumor efficacy in HCC cell lines Hep G2, SNU-182 and Hep 3B2.1-7. The HCC cell lines were cultured in vitro. These cells were treated with Torin-2. Cell apoptosis was evaluated by Annexin V staining. Cell proliferation and cell cycle progression were determined by Ki67 staining and propidium iodide staining, respectively. mTOR signaling, autophagy induction and expression of ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) were assessed by western blot analysis. The UHRF1 mRNA level was determined by real-time PCR. We found that Torin-2 effectively suppressed the growth and survival of HCC cell lines, demonstrated by reduced proliferation and a high rate of apoptosis. Further study elucidated that in addition to blocking mTOR complex 1 (mTORC1)-associated cell cycle progression and induction of autophagy, Torin-2 downregulated transcription of UHRF1, an essential regulator of DNA methylation that is highly expressed in HCC cell lines. Consistently, the level of DNA (cytosine-5)-methyltransferase 1 (DNMT1) was higher after treatment of the HCC cell lines with Torin-2. The downregulation of UHRF1 by Torin-1 was partially due to a decrease in the UHRF1 mRNA level. Torin-2 effectively inhibited HCC cell proliferation through induction of autophagy. Torin‑2-induced downregulation of UHRF1 expression may also contribute to its antitumor effect. Our research provides new clues regarding the antitumor effects of Torin-2 and sheds light on a novel therapeutic approach for HCC.[Abstract] [Full Text] [Related] [New Search]