These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Osmotic Virial Coefficients as Access to the Protein Partitioning in Aqueous Two-Phase Systems.
    Author: Kress C, Brandenbusch C.
    Journal: J Pharm Sci; 2015 Nov; 104(11):3703-3709. PubMed ID: 26239819.
    Abstract:
    A promising alternative to state of the art chromatographic separations of therapeutic proteins is the extraction of the target protein using an aqueous two-phase system (ATPS). The use of an additional salt working as a displacement agent can influence the protein partitioning behavior in ATPS and thus enable a selective purification of the target protein. The selection of a suitable ATPS for protein extraction requires information concerning the protein-protein interactions (second osmotic virial coefficient B22 ) as well as the interactions between protein and solute (displacement agent and phase-forming components) (cross virial coefficient B23 ). In this work, the partitioning behavior and the precipitation affinity of immunoglobulin G (IgG) is considered within a polyethylene glycol (PEG)-phosphate ATPS. The influence on IgG partitioning upon addition of NaCl and (NH4)2 SO4 was investigated. In order to access the IgG precipitation affinity and the IgG partitioning behavior, the B22 and B23 values were determined for several combinations of solute [PEG, phosphate buffer, NaCl, and (NH4)2 SO4 ] and IgG based on static light scattering measurements. A qualitative estimation of the IgG precipitation affinity and the suitability of a solute as potential displacement agent within the PEG-phosphate ATPS on the basis of the measured B22 and B23 values is presented.
    [Abstract] [Full Text] [Related] [New Search]