These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ciprofloxacin-Loaded Keratin Hydrogels Prevent Pseudomonas aeruginosa Infection and Support Healing in a Porcine Full-Thickness Excisional Wound. Author: Roy DC, Tomblyn S, Burmeister DM, Wrice NL, Becerra SC, Burnett LR, Saul JM, Christy RJ. Journal: Adv Wound Care (New Rochelle); 2015 Aug 01; 4(8):457-468. PubMed ID: 26244102. Abstract: Objective: Cutaneous wound infection can lead to impaired healing, multiple surgical procedures, and increased hospitalization time. We tested the effectiveness of keratin-based hydrogels (termed "keratose") loaded with ciprofloxacin to inhibit infection and support healing when topically administered to porcine excision wounds infected with Pseudomonas aeruginosa. Approach: Using a porcine excisional wound model, 10 mm full-thickness wounds were inoculated with 106 colony-forming units of P. aeruginosa and treated on days 1 and 3 postinoculation with ciprofloxacin-loaded keratose hydrogels. Bacteria enumeration and wound healing were assessed on days 3, 7, and 11 postinjury. Results: Ciprofloxacin-loaded keratose hydrogels reduced the amount of P. aeruginosa in the wound bed by 99.9% compared with untreated wounds on days 3, 7, and 11 postinjury. Ciprofloxacin-loaded keratose hydrogels displayed decreased wound contraction and reepithelialization at day 7 postinjury. By day 11, wounds treated with ciprofloxacin-keratose hydrogels contained collagen-rich granulation tissue and myofibroblasts. Wounds treated with ciprofloxacin-loaded keratose hydrogels exhibited a transient increase in macrophages in the wound bed at day 7 postinjury that subsided by day 11. Innovation: Current therapies for wound infection include systemic antibiotics, which could lead to antibiotic resistance, and topical antimicrobial treatments, which require multiple applications and can delay healing. Here, we show that ciprofloxacin-loaded keratose hydrogels inhibit cutaneous wound infection without interfering with key aspects of the healing process including granulation tissue deposition and remodeling. Conclusions: Ciprofloxacin-loaded keratose hydrogels have the potential to serve as a point-of-injury antibiotic therapy that prevents infection and supports healing following cutaneous injury.[Abstract] [Full Text] [Related] [New Search]