These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Increased Quantum Dot Loading by pH Control Reduces Interfacial Recombination in Quantum-Dot-Sensitized Solar Cells. Author: Roelofs KE, Herron SM, Bent SF. Journal: ACS Nano; 2015 Aug 25; 9(8):8321-34. PubMed ID: 26244426. Abstract: The power conversion efficiency of quantum-dot-sensitized solar cells (QDSSCs) hinges on interfacial charge transfer. Increasing quantum dot (QD) loading on the TiO2 anode has been proposed as a means to block recombination of electrons in the TiO2 to the hole transport material; however, it is not known whether a corresponding increase in QD-mediated recombination processes might lead to an overall higher rate of recombination. In this work, a 3-fold increase in PbS QD loading was achieved by the addition of an aqueous base to negatively charge the TiO2 surface during Pb cation deposition. Increased QD loading improved QDSSC device efficiencies through both increased light absorption and an overall reduction in recombination. Unexpectedly, we also found increased QD size had the detrimental effect of increasing recombination. Kinetic modeling of the effect of QD size on interfacial charge transfer processes provided qualitative agreement with the observed variation in recombination lifetimes. These results demonstrate a robust method of improving QD loading, identify the specific mechanisms by which increased QD deposition impacts device performance, and provide a framework for future efforts optimizing the device architecture of QDSSCs.[Abstract] [Full Text] [Related] [New Search]