These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of Humoral Responses Induced by an H7N9 Influenza Virus-Like Particle Vaccine in BALB/C Mice.
    Author: Zhang L, Lu J, Chen Y, Shi F, Yu H, Huang C, Cui L, Shi Z, Jiao Y, Hu Y.
    Journal: Viruses; 2015 Aug 04; 7(8):4369-84. PubMed ID: 26248076.
    Abstract:
    In April 2013, human infections with a novel avian influenza (H7N9) virus emerged in China. It has caused serious concerns for public health throughout the world. However, there is presently no effective treatment, and an A (H7N9) H7 subtype influenza vaccine is not available. Vaccination with virus-like particles (VLPs) has showed considerable promise for many other subtype influenza viruses. To produce H7N9 VLPs, full length, unmodified hemagglutinin (HA), neuraminidase (NA), and matrix1 (M1) genes from the A/Wuxi/1/2013(H7N9) were cloned into a pCDNA5.1 FRT vector. By co-transfection, VLPs containing HA, NA, and M1 were secreted by 293T cells. VLPs were purified by ultracentrifugation and injected into mice by the intramuscular route. In animal experiments, humoral and cellular immunoresponse were all triggered by H7N9 VLPs. High levels of specific antibodies and the isotypes of IgG were detected by ELISA. Anamnestic cellular immune responses were examined by detecting specific cytotoxic T cell for IFN-Υ production in ELISPOT assay. The hemagglutination-inhibition (HAI) against the homologous virus was more than 1:64, and cross-reactive HAI titers against the heterologous virus (H1N1 and H3N2) were more than 1:16. Moreover, VLPs immunized mice showed a rapid increase of neutralizing antibodies, with neutralizing antibody titers more than 1:8, which increased four-fold against PBS immunized mice in week four. By week six, the mice had high neutralization ability against the given strain and held a potent homologous virus neutralizing capacity. Thus, VLPs represent a potential strategy for the development of a safe and effective vaccine against novel avian influenza (H7N9) virus.
    [Abstract] [Full Text] [Related] [New Search]