These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential Effects of Polymer-Surface Decoration on Drug Delivery, Cellular Retention, and Action Mechanisms of Functionalized Mesoporous Silica Nanoparticles. Author: You Y, Hu H, He L, Chen T. Journal: Chem Asian J; 2015 Dec; 10(12):2744-54. PubMed ID: 26248202. Abstract: Polymer-surface decoration has been found to be an effective strategy to enhance the biological activities of nanomedicine. Herein, three different types of polymers with a cancer-targeting ligand Arg-Gly-Asp peptide (RGD) have been used to decorate mesoporous silica nanoparticles (MSNs) and the functionalized nanosystems were used as drug carriers of oxaliplatin (OXA). The results showed that polymer-surface decoration of the MSNs nanosystem by poly(ethylene glycol) (PEG) and polyethyleneimine (PEI) significantly enhanced the anticancer efficacy of OXA, which was much higher than that of chitosan (CTS). This effect was closely related to the enhancement of the cellular uptake and cellular drug retention. Moreover, PEI@MSNs-OXA possessed excellent advantages in penetrating ability and inhibitory effects on SW480 spheroids that were used to simulate the in vivo tumor environments. Therefore, this study provides useful information for the rational design of a cancer-targeted MSNs nanosystem with polymer-surface decoration.[Abstract] [Full Text] [Related] [New Search]