These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Simultaneous production of lactobionic and gluconic acid in cheese whey/glucose co-fermentation by Pseudomonas taetrolens. Author: Alonso S, Rendueles M, Díaz M. Journal: Bioresour Technol; 2015 Nov; 196():314-23. PubMed ID: 26253915. Abstract: Substrate versatility of Pseudomonas taetrolens was evaluated for the first time in a co-fermentation system combining cheese whey and glucose, glycerol or lactose as co-substrates. Results showed that P. taetrolens displayed different production patterns depending on the co-substrate supplied. Whereas the presence of glucose led to a simultaneous co-production of lactobionic (78g/L) and gluconic acid (8.8g/L), lactose feeding stimulated the overproduction of lactobionic acid from whey with a high specific productivity (1.4g/gh) and yield (100%). Co-substrate supply of glycerol conversely led to reduced lactobionic acid yield (82%) but higher cell densities (1.8g/L), channelling the carbon source towards cell growth and maintenance. Higher carbon availability impaired the metabolic activity as well as membrane integrity, whereas lactose feeding improved the cellular functionality of P. taetrolens. Insights into these mixed carbon source strategies open up the possibility of co-producing lactobionic and gluconic acid into an integrated single-cell biorefinery.[Abstract] [Full Text] [Related] [New Search]