These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tight mitochondrial control of calcium and exocytotic signals in chromaffin cells at embryonic life. Author: Vestring S, Fernández-Morales JC, Méndez-López I, C Musial D, G de Diego AM, Padín JF, G García A. Journal: Pflugers Arch; 2015 Dec; 467(12):2589-601. PubMed ID: 26254593. Abstract: Calcium buffering by mitochondria plays a relevant physiological function in the regulation of Ca(2+) and exocytotic signals in mature chromaffin cells (CCs) from various adult mammals. Whether a similar or different role of mitochondrial Ca(2+) buffering is present in immature CCs at early life has not been explored. Here we present a comparative study in rat embryonic CCs and rat mother CCs, of various physiological parameters that are known to be affected by mitochondrial Ca(2+) buffering during cell activation. We found that the clearance of cytosolic Ca(2+) transients ([Ca(2+)]c) elicited by high K(+) was 7-fold faster in embryo CCs compared to mother CCs. This strongly suggests that at embryonic life, the mitochondria play a more significant role in the clearance of [Ca(2+)]c loads compared to adult life. Consistent with this view are the following results concerning the transient suppression of mitochondrial Ca(2+) buffering by protonophore FCCP, in embryonic CCs compared to mother CCs: (i) faster and greater inactivation of inward calcium currents, (ii) higher K(+)-elicited [Ca(2+)]c transients with 25-fold faster clearance, (iii) higher increase of basal catecholamine release and (iv) higher potentiation of K(+)-evoked secretion. These pronounced differences could be explained by two additional features (embryo versus mother CCs): (a) slower recovery of mitochondrial resting membrane potential after the application of a transient FCCP pulse and (b) greater relative density of the mitochondria in the cytosol. This tighter control by the mitochondria of Ca(2+) and exocytotic signals may be relevant to secure a healthy catecholamine secretory response at early life.[Abstract] [Full Text] [Related] [New Search]