These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Eye drop delivery of pigment epithelium-derived factor-34 promotes retinal ganglion cell neuroprotection and axon regeneration.
    Author: Vigneswara V, Esmaeili M, Deer L, Berry M, Logan A, Ahmed Z.
    Journal: Mol Cell Neurosci; 2015 Sep; 68():212-21. PubMed ID: 26260110.
    Abstract:
    Axotomised retinal ganglion cells (RGCs) die rapidly by apoptosis and fail to regenerate because of the limited availability of neurotrophic factors and a lack of axogenic stimuli. However, we have recently showed that pigment epithelium-derived factor (PEDF) promotes RGC survival and axon regeneration after optic nerve crush injury. PEDF has multiple fragments of the native peptide that are neuroprotective, anti-angiogenic and anti-inflammatory. Here we investigated the neuroprotective and axogenic properties of a fragment of PEDF, PEDF-34, in retinal neurons in vitro and when delivered by intravitreal injection and eye drops in vivo. We found that PEDF-34 was 43% more neuroprotective and 52% more neuritogenic than PEDF-44 in vitro. Moreover, in vivo, intravitreal delivery of 1.88nM PEDF-34 was 71% RGC neuroprotective at 21days after optic nerve crush compared to intact controls, whilst daily eye drops containing 1.88nM PEDF-34 promoted 87% RGC survival. After topical eye drop delivery, PEDF-34 was detected in the vitreous body within 30min and attained physiologically relevant concentrations in the retina by 4h peaking at 1.4±0.05nM by 14days. In eye drop- compared to intravitreal-treated PEDF-34 animals, 55% more RGC axons regenerated 250μm beyond the optic nerve lesion. We conclude that daily topical eye drop application of PEDF-34 is superior to weekly intravitreal injections in promoting RGC survival and axon regeneration through both direct effects on retinal neurons and indirect effects on other retinal cells.
    [Abstract] [Full Text] [Related] [New Search]