These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Understanding DABCO Nanorotor Dynamics in Isostructural Metal-Organic Frameworks. Author: Burtch NC, Torres-Knoop A, Foo GS, Leisen J, Sievers C, Ensing B, Dubbeldam D, Walton KS. Journal: J Phys Chem Lett; 2015 Mar 05; 6(5):812-6. PubMed ID: 26262657. Abstract: Flexible framework dynamics present in the subset of metal-organic frameworks known as soft porous crystals give rise to interesting structural properties that are unique to this class of materials. In this work, we use experiments and molecular simulation to understand the highly dynamic nanorotor behavior of the 1,4-diazabicyclo[2.2.2]octane (DABCO) ligand in the pillared Zn-DMOF and Zn-DMOF-TM (TM = tetramethyl) structures. While DABCO is known to be displaced in the presence of water in the parent Zn-DMOF structure, the Zn-DMOF-TM variation is highly stable even after adsorbing significant amounts of water vapor. The dynamics of DABCO in the presence of water guest molecules is therefore also explored in the Zn-DMOF-TM structure via in situ NMR and IR experiments. This analysis shows that the rotational motion of the DABCO linkers is dependent on water content, but not a likely source of water instability because the dynamics are fast and largely unaffected by the presence of methyl functional groups.[Abstract] [Full Text] [Related] [New Search]