These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A label-free photoelectrochemical aptasensor based on nitrogen-doped graphene quantum dots for chloramphenicol determination. Author: Liu Y, Yan K, Okoth OK, Zhang J. Journal: Biosens Bioelectron; 2015 Dec 15; 74():1016-21. PubMed ID: 26264269. Abstract: A photoelectrochemical (PEC) sensing platform for chloramphenicol (CAP) detection was constructed using nitrogen-doped graphene quantum dots (N-GQDs) as transducer species and label-free aptamer as biological recognition element. N-GQDs, synthesized via a facile one-step hydrothermal method, were explored to achieve highly efficient photon-to-electricity conversion under visible light irradiation. The obtained N-GQDs were characterized by transmission electron microscopy (TEM), which displayed a narrow size distribution with a mean diameter of 2.14 nm. The X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared spectroscopic (FT-IR) analysis confirmed that nitrogen was successfully doped in GQDs. The UV-visible absorption spectra indicated that nitrogen doping obviously enhanced the absorption of GQDs in visible light region. As a result, the PEC activity of GQDs was promoted by nitrogen doping. Additionally, the π-conjugated structure of N-GQDs provided an excellent platform for aptamer immobilization via π-π stacking interaction. Such an aptamer/N-GQDs based sensor showed a linear PEC response to CAP concentration in the range of 10-250 nM with a detection limit (3 S/N) of 3.1 nM. The developed PEC aptasensor exhibited high sensitivity and selectivity, good reproducibility and high stability.[Abstract] [Full Text] [Related] [New Search]