These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Two-Photon Sensing and Imaging of Endogenous Biological Cyanide in Plant Tissues Using Graphene Quantum Dot/Gold Nanoparticle Conjugate. Author: Wang L, Zheng J, Yang S, Wu C, Liu C, Xiao Y, Li Y, Qing Z, Yang R. Journal: ACS Appl Mater Interfaces; 2015 Sep 02; 7(34):19509-15. PubMed ID: 26264405. Abstract: One main source of cyanide (CN(-)) exposure for mammals is through the plant consumption, and thus, sensitive and selective CN(-) detection in plants tissue is a significant and urgent work. Although various fluorescence probes have been reported for CN(-) in water and mammalian cells, the detection of endogenous biological CN(-) in plant tissue remains to be explored due to the high background signal and large thickness of plant tissue that hamper the effective application of traditional one-photo excitation. To address these issues, we developed a new two-photo excitation (TPE) nanosensor using graphene quantum dots (GQDs)/gold nanoparticle (AuNPs) conjugate for sensing and imaging endogenous biological CN(-). With the benefit of the high quenching efficiency of AuNPs and excellent two-photon properties of GQDs, our sensing system can achieve a low detection limit of 0.52 μM and deeper penetration depth (about 400 μm) without interference from background signals of a complex biological environment, thus realizing sensing and imaging of CN(-) in different types of plant tissues and even monitoring CN(-) removal in food processing. To the best of our knowledge, this is the first time for fluorescent sensing and imaging of CN(-) in plant tissues. Moreover, our design also provides a new model scheme for the development of two-photon fluorescent nanomaterial, which is expected to hold great potential for food processing and safety testing.[Abstract] [Full Text] [Related] [New Search]