These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: IFNγ+ Treg in-vivo and in-vitro represent both activated nTreg and peripherally induced aTreg and remain phenotypically stable in-vitro after removal of the stimulus.
    Author: Daniel V, Trojan K, Adamek M, Opelz G.
    Journal: BMC Immunol; 2015 Aug 13; 16():45. PubMed ID: 26268522.
    Abstract:
    BACKGROUND: IFNγ-producing CD4+CD25+Foxp3+CD127- Treg represent the first line of Treg during an immune response. In the present study we determined whether IFNγ+ Treg in-vivo and in-vitro are Helios-positive representing activated natural (nTreg) or Helios-negative representing adaptive Treg (aTreg) and whether they originate from CD4+CD25+ and/or CD4+CD25- PBL. Furtheron, we investigated whether they are inducible by recombinant IFNγ (rIFNγ) as a single stimulus, decrease in-vitro after elimination of the stimulus, and have a demethylated Foxp3 Treg-specific demethylated region (TSDR) which is associated with stable Foxp3 expression. METHOD: Subsets of IFNγ+ Treg were determined in peripheral blood of healthy controls using eight-color flow cytometry and were further investigated in-vitro. Foxp3 TSDR methylation status was determined using bisulphite polymerase chain reaction (PCR) and high resolution melt (HRM) analysis. RESULTS: Nearly all Treg in the peripheral blood were Helios+IFNγ- (1.9 ± 1.1/μl) and only few were Helios+IFNγ+ or Helios-IFNγ+ Treg (both 0.1 ± 0.1/μl). Enriched IFNγ+ Treg subsets showed in part strong Foxp3 TSDR demethylation. In-vitro, rIFNγ was unable to induce Treg. CD4+CD25+ enriched PBL stimulated with PMA/Ionomycin in the presence of rIFNγ were rather resistant to the effect of rIFNγ, in contrast to CD4+CD25- enriched PBL which showed increasing total Treg with Helios+ Treg switching from IFNγ- to IFNγ+ and increasing Helios-IFNγ+ Treg. The data indicate that rIFNγ, in combination with a polyclonal stimulus, activates nTreg and induces aTreg. When phorbol 12-myristate 13-acetate (PMA)/Ionomycin was washed out from the cell culture after 6 h stimulation, Treg induction continued for at least 96 h of cell culture, contradicting the hypothesis that removal of the stimulus results in significant decrease of IFNγ- and IFNγ+ CD4+CD25+Foxp3+CD127- Treg due to loss of Foxp3 expression. CONCLUSIONS: IFNγ+Helios- aTreg as well as IFNγ+Helios+ nTreg are detectable in the blood of healthy individuals, show in part strong Foxp3 TSDR demethylation and are inducible in-vitro. The present data provide further insight concerning the in-vivo and in-vitro characteristics of IFNγ+ Treg and help to understand their role in immunoregulation. Alloantigen-specific demethylated IFNγ+Helios+ nTreg might represent a suitable marker for monitoring graft-specific immunosuppression in renal transplant recipients.
    [Abstract] [Full Text] [Related] [New Search]