These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Loss of NDRG2 enhanced activation of the NF-κB pathway by PTEN and NIK phosphorylation for ATL and other cancer development.
    Author: Ichikawa T, Nakahata S, Fujii M, Iha H, Morishita K.
    Journal: Sci Rep; 2015 Aug 13; 5():12841. PubMed ID: 26269411.
    Abstract:
    The activation of nuclear factor kappa B (NF-κB) signaling has a central role in the development of adult T-cell leukemia/lymphoma (ATL) and many other cancers. However, the activation mechanism of the NF-κB pathways remains poorly understood. Recently, we reported that N-myc downstream-regulated gene 2 (NDRG2) is a negative regulator of the phosphoinositide 3-kinase (PI3K)/AKT pathway by promoting the active dephosphorylated form of PTEN at its C-terminus via the recruitment of PP2A. Additionally, the down-regulation of NDRG2 expression promotes the inactive phosphorylated form of PTEN, which results in constitutively active PI3K/AKT signaling in various cancer cell types. Here, we investigated the involvement of NDRG2 in modulating NF-κB signaling. The forced expression of NDRG2 in ATL cells down-regulates not only the canonical pathway by inhibiting AKT signaling but also the non-canonical pathway by inducing NF-κB-inducing kinase (NIK) dephosphorylation via the recruitment of PP2A. Therefore, NDRG2 works as a PP2A recruiter to suppress not only PI3K/AKT signaling but also NF-κB signaling, which is particularly important in host defenses or immune responses to Human T-cell leukemia virus type 1 (HTLV-1) infection. Furthermore, the loss of NDRG2 expression might play an important role in the progression of tumor development after HTLV-1 infection.
    [Abstract] [Full Text] [Related] [New Search]